Characterizations of Sobolev Inequalities on Metric Spaces

نویسندگان

  • JUHA KINNUNEN
  • RIIKKA KORTE
چکیده

We present isocapacitary characterizations of Sobolev inequalities in very general metric measure spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetrization and Sharp Sobolev Inequalities in Metric Spaces

We derive sharp Sobolev inequalities for Sobolev spaces on metric spaces. In particular, we obtain new sharp Sobolev embeddings and FaberKrahn estimates for Hörmander vector fields.

متن کامل

Stability of heat kernel estimates for symmetric jump processes on metric measure spaces

In this paper, we consider symmetric jump processes of mixed-type on metric measure spaces under general volume doubling condition, and establish stability of two-sided heat kernel estimates and heat kernel upper bounds. We obtain their stable equivalent characterizations in terms of the jumping kernels, modifications of cut-off Sobolev inequalities, and the Faber-Krahn inequalities. In particu...

متن کامل

Isoperimetry and Symmetrization for Sobolev Spaces on Metric Spaces

This is a follow up to our recent work [10], where we obtained new symmetrization inequalities for Sobolev functions that compare the rearrangement of a function with the rearrangement of its gradient, and incorporate in their formulation the isoperimetric profile (cf. (2.1) below). These inequalities imply in a straightforward fashion functional inequalities for very general rearrangement inva...

متن کامل

Quasiopen and p-Path Open Sets, and Characterizations of Quasicontinuity

In this paper we give various characterizations of quasiopen sets and quasicontinuous functions on metric spaces. For complete metric spaces equipped with a doubling measure supporting a p-Poincaré inequality we show that quasiopen and p-path open sets coincide. Under the same assumptions we show that all Newton-Sobolev functions on quasiopen sets are quasicontinuous.

متن کامل

Characterizations of Metric Trees and Gromov Hyperbolic Spaces

A. In this note we give new characterizations of metric trees and Gromov hyperbolic spaces and generalize recent results of Chatterji and Niblo. Our results have a purely metric character, however, their proofs involve two classical tools from analysis: Stokes’ formula in R2 and a Rademacher type differentiation theorem for Lipschitz maps. This analytic approach can be used to give chara...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008