Characterizations of Sobolev Inequalities on Metric Spaces
نویسندگان
چکیده
We present isocapacitary characterizations of Sobolev inequalities in very general metric measure spaces.
منابع مشابه
Symmetrization and Sharp Sobolev Inequalities in Metric Spaces
We derive sharp Sobolev inequalities for Sobolev spaces on metric spaces. In particular, we obtain new sharp Sobolev embeddings and FaberKrahn estimates for Hörmander vector fields.
متن کاملStability of heat kernel estimates for symmetric jump processes on metric measure spaces
In this paper, we consider symmetric jump processes of mixed-type on metric measure spaces under general volume doubling condition, and establish stability of two-sided heat kernel estimates and heat kernel upper bounds. We obtain their stable equivalent characterizations in terms of the jumping kernels, modifications of cut-off Sobolev inequalities, and the Faber-Krahn inequalities. In particu...
متن کاملIsoperimetry and Symmetrization for Sobolev Spaces on Metric Spaces
This is a follow up to our recent work [10], where we obtained new symmetrization inequalities for Sobolev functions that compare the rearrangement of a function with the rearrangement of its gradient, and incorporate in their formulation the isoperimetric profile (cf. (2.1) below). These inequalities imply in a straightforward fashion functional inequalities for very general rearrangement inva...
متن کاملQuasiopen and p-Path Open Sets, and Characterizations of Quasicontinuity
In this paper we give various characterizations of quasiopen sets and quasicontinuous functions on metric spaces. For complete metric spaces equipped with a doubling measure supporting a p-Poincaré inequality we show that quasiopen and p-path open sets coincide. Under the same assumptions we show that all Newton-Sobolev functions on quasiopen sets are quasicontinuous.
متن کاملCharacterizations of Metric Trees and Gromov Hyperbolic Spaces
A. In this note we give new characterizations of metric trees and Gromov hyperbolic spaces and generalize recent results of Chatterji and Niblo. Our results have a purely metric character, however, their proofs involve two classical tools from analysis: Stokes’ formula in R2 and a Rademacher type differentiation theorem for Lipschitz maps. This analytic approach can be used to give chara...
متن کامل